Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Information Theory and Coding

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART-A

1 a. Define:
i) Self Information
ii) Average Information
iii) Information rate.
(06 Marks)
b. Find relationship between Hartleys, nats and bits.
c. A code is composed of dots and dashes. Assuming that a dash is 3 times as long as a dot and has one-third the probability of occurrence. Calculate:
i) The information in a dot and a dash
ii) The entropy of dot-dash code
iii) The average rate of information if a dot lasts for $10 \mathrm{~m}-\mathrm{sec}$ and this time is allowed between symbols.
(08 Marks)
2 a. Explain the important properties of codes to be considered while encoding source with examples.
(08 Marks)
b. Apply Shannon's encoding algorithm to the following set of messages and obtain code efficiency and redundancy. Write code tree for the code.
(12 Marks)

$$
\begin{array}{lllll}
\mathrm{M}_{1} & \mathrm{M}_{2} & \mathrm{M}_{3} & \mathrm{M}_{4} & \mathrm{M}_{5} \\
1 / 8 & 1 / 16 & 3 / 16 & 1 / 4 & 3 / 8
\end{array}
$$

3 a. Consider a source with 8 alphabets A to H with respective probabilities of $0.22,0.20,0.18$, $0.15,0.10,0.08,0.05,0.02$. i) Construct a binary compact code and determine the code efficiency ii) Construct a ternary compact code and determine the efficiency of the code. Compare and comment on the result. Draw code tree for all cases.
b. A transmitter transmits 5 symbols with probabilities $0.2,0.3,0.2,0.1$ and 0.2 . Given the channel matrix $\mathrm{P}(\mathrm{B} / \mathrm{A})$, calculate: i) $\mathrm{H}(\mathrm{B}) \quad$ ii) $\mathrm{H}(\mathrm{A} . \mathrm{B})$.
$\mathrm{P}(\mathrm{B} / \mathrm{A})=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 / 4 & 3 / 4 & 0 & 0 \\ 0 & 1 / 3 & 2 / 3 & 0 \\ 0 & 0 & 1 / 3 & 2 / 3 \\ 0 & 0 & 1 & 0\end{array}\right]$

4 a. Find the capacity of the discrete channel shown in Fig.Q.4(a).

Fig.Q.4(a)
(10 Marks)
b. State and explain the Shannon-Hartley law. Obtain an expression for the maximum capacity of a continuoûs channel.
(10 Marks)

PART - B

5 a. If C is a valid code-vector then prove that $\mathrm{CH}^{\mathrm{T}}=0$ where H^{T} is the transpose of the parity check matrix H .
(06 Marks)
b. For a systematic $(6,3)$ linear block code. The parity matrix ' P ' is given by $\mathrm{P}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
i) Find all possible code-vectors
ii) Construct the corresponding encoding circuit
iii) The received code-vector $\mathrm{R}=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right]$. Detect and correct the single error that occurred due to noise.
iv) The received vector $R=\left[r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right]$ construct the corresponding syndrome calculation circuit.
(14 Marks)
6 a. Define cyclic code. Explain how cyclic codes are generated from the generating polynomials.
(06 Marks)
b. A $(15,5)$ linear cyclic code has a generator polynomial $g(x)=1+x+x^{2}+x^{4}+x^{5}+x^{8}+x^{10}$
i) Draw the block diagram of an encoder and syndrome calculator for this code.
ii) Find the code polynomial for the message polynomial $\mathrm{D}(\mathrm{x})=1+\mathrm{x}^{2}+\mathrm{x}^{4}$ in systematic form.
iii) Is $\mathrm{v}(\mathrm{x})=1+\mathrm{x}^{4}+\mathrm{x}^{6}+\mathrm{x}^{8}+\mathrm{x}^{14}$ a code polynomial.
(14 Marks)
7 Write a short note on:
a. RS code
b. BCH code
c. Golay code
d. Burst error correcting code.
$8 \quad$ Consider the $(3,1,2)$ convolutional code with $\mathrm{g}^{(1)}=(1,1,0), \mathrm{g}^{(2)}=101$ and $\mathrm{g}^{(3)}=111$
a. Draw the encoder block diagram
b. Find the generator matrix
c. Find the code-word corresponding to the information sequence (11101) using Time-domain and transfer domain approach.
(20 Marks)

